Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Acta Medica Iranica. 2013; 51 (8): 513-519
in English | IMEMR | ID: emr-142878

ABSTRACT

Cyclin E, HER-2 and p53, are considered as major prognostic markers in breast cancer. As they are related in patho-clinical level, we aimed to check if they have any direct interaction on expression of each other. To study the effect of cyclin E on HER-2 expression, cell lines stably overexpressing cyclin E or its low molecular weight [LMW] isoforms were generated. To understand the results of p53 silencing either alone or in combination with cyclin E overexpression, we created three different p53 stably knocked down cell lines. Protein expression was analyzed by western blot, HER-2 expression in the established cell lines were determined using SYBR green real time PCR and data analyzed by REST software. Results indicate that HER-2 expression is only downregulated following p53 silencing and none of cyclin E isoforms can alter its expression. The presence of cyclin E isoforms in p53 silenced clones also does not altered HER-2 expression. Given the fact that p53 degradation is increased by HER-2 overexpression, these data can draw a regulatory loop in which a non-mutated functional p53 and HER-2 can bidirectionally regulate the expression of these two genes. This study improves our understandings of these pathways and these proteins can be introduced either as a marker or as a target in cancer treatment.


Subject(s)
Humans , Female , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Cyclin E/physiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MCF-7 Cells , Polymerase Chain Reaction , DNA Primers
2.
Yonsei Medical Journal ; : 597-613, 2005.
Article in English | WPRIM | ID: wpr-62309

ABSTRACT

Carcinoma of the uterine cervix is one of the most common malignancies among women worldwide. Human papillomaviruses (HPV) have been identified as the major etiological factor in cervical carcinogenesis. However, the time lag between HPV infection and the diagnosis of cancer indicates that multiple steps, as well as multiple factors, may be necessary for the development of cervical cancer. The development and progression of cervical carcinoma have been shown to be dependent on various genetic and epigenetic events, especially alterations in the cell cycle checkpoint machinery. In mammalian cells, control of the cell cycle is regulated by the activity of cyclin-dependent kinases (CDKs) and their essential activating coenzymes, the cyclins. Generally, CDKs, cyclins, and CDK inhibitors function within several pathways, including the p16INK4A-cyclin D1-CDK4/6-pRb-E2F, p21WAF1-p27KIP1-cyclinE-CDK2, and p14ARF-MDM2-p53 pathways. The results from several studies showed aberrant regulation of several cell cycle proteins, such as cyclin D, cyclin E, p16 INK4A, p21WAF1, and p27KIP1, as characteristic features of HPV- infected and HPV E6/E7 oncogene-expressing cervical carcinomas and their precursors. These data suggested further that interactions of viral proteins with host cellular proteins, particularly cell cycle proteins, are involved in the activation or repression of cell cycle progression in cervical carcinogenesis.


Subject(s)
Humans , Female , Uterine Cervical Neoplasms/pathology , Tumor Suppressor Protein p53/physiology , Tumor Suppressor Protein p14ARF/physiology , Retinoblastoma Protein/physiology , Proto-Oncogene Proteins c-mdm2/physiology , E2F Transcription Factors/physiology , Cyclin-Dependent Kinase Inhibitor p27/physiology , Cyclin-Dependent Kinase Inhibitor p21/physiology , Cyclin-Dependent Kinase Inhibitor p16/physiology , Cyclin-Dependent Kinase 4/physiology , Cyclin-Dependent Kinase 2/physiology , Cyclin E/physiology , Cyclin D1/physiology , Cell Cycle/physiology
SELECTION OF CITATIONS
SEARCH DETAIL